Structure of Tris(phenylthio)phosphine

By Neil Burford* and Bruce W. Royan
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H $4 J 3$
and Peter S. White*
Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2

(Received 14 March 1989; accepted 23 May 1989)

Abstract

C}_{18} \mathrm{H}_{15} \mathrm{PS}_{3}, M_{r}=358 \cdot 47\), trigonal, $R \overline{3}, a=$ 12.6760 (12),$\quad c=18.8921$ (20) $\AA, V=2628.9$ (4) \AA^{3}, $Z=6, D_{x}=1.359 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Мо $K \alpha)=0.71073 \AA$, $\mu=0.26 \mathrm{~mm}^{-1}, \quad F(000)=1116, \quad T=293 \mathrm{~K}, \quad R=$ 0.031 for 899 significant reflections. The structure consists of discrete molecular units. The phosphine centre has pyramidal geometry and C_{3} symmetry. The compound contains a rare example of a genuine $\mathrm{P}^{\text {III }}-\mathrm{S}$ single bond with a bond length of $2 \cdot 122$ (1) \AA. The $\mathrm{C}-\mathrm{S}$ bond length is 1.785 (2) \AA.

Introduction. Structural studies of the phospho-rus(III)-sulfur single bond are rare and pertain almost exclusively to cyclic compounds (Tuzova, Naumov, Galiakberov, Ofitserov \& Pudovik, 1981). Accurate determination of representative $\mathrm{P}-\mathrm{S}$ bond lengths and geometry provides an important base comparison for the development of new bonding arrangements for phosphorus and sulfur (Burford, Royan, Linden \& Cameron, 1988, 1989; Burford \& Royan, 1989). Here we report the crystal structure of the title compound, a simple phosphine containing an example of a genuine strain-free $\mathrm{P}^{\mathrm{III}}-\mathrm{S}$ single $\boldsymbol{\sigma}$ bond.

Experimental. The title compound was prepared from thiophenol and PhSPCl_{2} in ether (Moedritzer, Maier \& Groenweghe, 1962). White, air-sensitive crystals were grown by slow evaporation of a CCl_{4} solution. Crystal $0.60 \times 0.60 \times 0.35 \mathrm{~mm}$ (Pyrex capillary); Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Mo $K \alpha$ radiation. Lattice constants were obtained from 30 well centred reflections in the range $30<2 \theta<33^{\circ}$. Intensities were measured using an $\omega / 2 \theta$ scan mode to $2 \theta_{\text {max }}$ of 50°, $h_{\text {max }} 13, k_{\text {max }} 14, l_{\text {max }} 22$. Three standard reflections monitored every hour showed no significant deviations in intensity. Intensities of 6127 reflections were measured and averaged to yield 1036 unique reflections ($R_{\text {int }}=0.018$) of which 899 were considered observed [$I>2 \cdot 5 \sigma(I)$]. Absorption correc-

[^0]0108-2701/90/020274-03\$03.00
tions were made. The maximum and minimum transmission factors are 0.9073 and 0.9068 . The structure was solved by direct methods and refined by full-matrix least squares minimizing $\sum w(\Delta F)^{2}$, where $w=1 /\left[\sigma(F)^{2}+0.00005 F^{2}\right]$ and σ was obtained from counting statistics. Scattering factors were taken from International Tables for X-ray Crystallography (1974) and corrected for anomalous dispersion. All non-H atoms were refined anisotropically, the H atoms were located in a difference Fourier synthesis and refined isotropically with the temperature factor of the atom to which they are bound. The final cycles of refinement of 87 parameters gave $R=$ $0.031, w R=0.045$ and a goodness of fit of 1.635 . The largest Δ / σ was $0 \cdot 118$. A final difference synthesis showed no significant features and had a maximum of $0.20 \mathrm{e}^{-3}$ and a minimum of $-0.14 \mathrm{e} \AA^{-3}$. All computations were performed using the PC version of NRCVAX (Gabe, Lee \& Le Page, 1985). Table 1 lists refined fractional coordinates and Table 2 provides selected bond lengths and angles. \dagger An ORTEP (Johnson, 1976) view of the molecular unit and a PLUTO (Motherwell \& Clegg, 1978) stereoview of the unit-cell contents are displayed in Figs. 1 and 2, respectively.

Discussion. The structure consists of discrete molecular units, the phosphorus centres of which reside on a crystallographic threefold axis. The PS_{3} unit adopts the standard pyramidal geometry, and the phenyl groups assume a cis orientation with respect to the lone pair on phosphorus (exo configuration). The compound is isostructural with the arsenic analogue $(\mathrm{PhS})_{3}$ As (Pappalardo, Chakravorty, Irgolic \& Meyers, 1983), and the S-P-S angle $\left[97.45(5)^{\circ}\right]$ is similar to the corresponding S -As-S angle [96.38 (3) ${ }^{\circ}$]. Consequently, neither compound exhib-

[^1]© 1990 International Union of Crystallography

Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors (\AA^{2}) with e.s.d.'s in parentheses for the non -H atoms
$B_{o q}$ is the mean of the principal axes of the thermal ellipsoid.

	x	y	z	$B_{\text {eq }}$
P1	0.0000	0.00000	$0.39112(5)$	$3.14(3)$
S1	$0.04150(6)$	$0.16153(6)$	$0.33531(3)$	$4.04(3)$
C1	$-0.03887(20)$	$0.21489(19)$	$0.38824(12)$	$3.21(11)$
C2	$0.01634(21)$	$0.28631(21)$	$0.44724(14)$	$4.02(12)$
C3	$-0.04324(25)$	$0.33286(23)$	$0.48565(14)$	$4.39(13)$
C4	$-0.15774(24)$	$0.30889(22)$	$0.46651(12)$	$4.08(13)$
C5	$-0.21255(22)$	$0.23721(24)$	$0.40816(14)$	$4.04(12)$
C6	$-0.15429(21)$	$0.18996(21)$	$0.36894(12)$	$4.9(6)$

Table 2. Selected bond distances (\AA) and angles (${ }^{\circ}$) with e.s.d.'s in parentheses

$\mathrm{Pl}-\mathrm{Sl}$	$2 \cdot 122$ (1)	S1-Cl	1.785 (2)
$\mathrm{Cl}-\mathrm{C} 2$	$1 \cdot 385$ (3)	C2-C3	1.375 (4)
C3-C4	1.374 (4)	C4-C5	1.376 (4)
C5-C6	$1 \cdot 377$ (4)	C6-Cl	$1 \cdot 382$ (3)
$\mathrm{Sl}-\mathrm{Pl}-\mathrm{Sl}$	97.45 (5)	$\mathrm{Pl}-\mathrm{Sl}-\mathrm{Cl}$	100.03 (7)
$\mathrm{S} 1-\mathrm{Cl}-\mathrm{C} 2$	$120 \cdot 1$ (2)	$\mathrm{S} 1-\mathrm{Cl}-\mathrm{C} 6$	120.4 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.9 (2)	C2-C3-C4	120.8 (2)
C3-C4-C5	$119 \cdot 1$ (2)	C4-C5-C6	121.0 (2)
C5-C6-Cl	$119 \cdot 7$ (2)	C6-Cl-C2	$119 \cdot 5$ (2)

its the π structure evident in the planar nitrogen analogue (PhS$)_{3} \mathrm{~N}$ (Carruthers, Prout \& Watkin, 1981).

The $\mathrm{P}-\mathrm{S}$ bond length [2.122(1) \AA] is not significantly different from those of tris(methylthio)phosphine $[2 \cdot 115(4) \AA]$ (electron diffraction, Tuzova et al., 1981), 2-chloro-1,3,2-dithiaphosphole [$2.077(15) \AA]$ (electron diffraction, Schultz, Hargittai, Martin \& Robert, 1974), 2,2-(ethylenedithio) bis(1,3,2-dithiaphosphole) [2•116(3) \AA, av.] (Newton, Brown, Finder, Robert, Martin \& Tranqui, 1974) and 5 -methyl-2-phenyl-1,3,2-benzodithiaphosphole [2.106 (2) \AA, av.] (Burford et al., 1989). These consistent examples establish a typical $\mathrm{P}^{\mathrm{II}}-\mathrm{S}$ σ-bond distance of $2 \cdot 11 \AA$.
While no unusual structural features are evident for the phenyl unit, the $\mathrm{C}-\mathrm{S}$ bonds $[1.785$ (2) \AA] are intermediate in length between the σ bond in $(\mathrm{MeS})_{3} \mathrm{P}[1.834$ (7) $\AA]$ (Tuzova et al., 1981), and a π-bonded $\mathrm{C}-\mathrm{S}$ bond in the 1,3,2-benzodithiaphospholium cation [1.720 (6) \AA av.] (Burford et al., 1989).

Conformational studies of the related tris(methylthio) phosphine have shown the presence of at least two conformers in the liquid (Fritzowsky, Lentz \& Goubeau, 1971) and in the gas phase (Tuzova et al., 1981), the minor of which has C_{3} symmetry. In contrast, the steric constraints in the triphenyl derivative enforce the C_{3} geometry in the solid state.

We thank the Natural Sciences and Engineering Research Council of Canada (NB and PSW), the

Fig. 1. ORTEP view of tris(phenylthio)phosphine.

Fig. 2. Stereoview of the unit cell (a towards viewer, b vertical, c horizontal).

Donors of the Petroleum Research Fund administered by the American Chemical Society (NB) and the Killam Foundation (BWR) for financial support, and the referee for valuable comments.

References

Burford, N. \& Royan, B. W. (1989). Phosphorus Sulfur Silicon, 41, 37-42.
Burford, N., Royan, B. W., Linden, A. \& Cameron, T. S. (1988). J. Chem. Soc. Chem. Commun. pp. 842-844.

Burford, N., Royan, B. W., Linden, A. \& Cameron, T. S. (1989). Inorg. Chem. 28, 144-150.

Carruthers, J. R., Prout, K. \& Watkin, D. J. (1981). Cryst. Struct. Commun. 10, 1217-1220.
Fritzowsky, V. N., Lentz, A. \& Goubeau, J. (1971). Z. Anorg. Allg. Chem. 386, 67-72.
Gabe, E. J., Lee, F. L. \& Le Page, Y. (1985). Crystallographic Computing 3: Data Collection, Structure Determination, Proteins, and Databases, edited by G. M. Sheldrick, C. KRÜGER \& R. GodDard, pp. 167-174. Oxford: Clarendon Press.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Moedritzer, K., Maier, L. \& Groenweghe, L. C. D. (1962). J. Chem. Eng. Data, 7, 307-310.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.

Newton, M. G., Brown, H. C., Finder, C. J., Robert, J. B., Martin, J. \& Tranqui, D. (1974). J. Chem. Soc. Chem. Commun. pp. 455-456.
Pappalardo, G. C., Chakravorty, R., Irgolic, K. J. \& Meyers, E. A. (1983). Acta Cryst. C39, 1618-1620.

Schultz, G. Y., Hargittal, I., Martin, J. \& Robert, J. B. (1974). Tetrahedron, 30, 2365-2369.

Tuzova, L. L., Naumov, V. A., Gallakberov, R. M., Ofitserov, E. N. \& Pudovik, A. N. (1981). Dokl. Akad. Nauk SSSR, 256, 891-894.

Acta Cryst. (1990). C46, 276-279

Structure of Methylenecyclopropane-2-carboxamide* by Time-of-Flight Neutron Diffraction

By Arthur J. Schultz
Chemistry and Materials Science Divisions, Argonne National Laboratory, Argonne, Illinois 60439, USA
Donald G. Van Derveer
School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
David W. Parker
Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
and John E. Baldwin
Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA

(Received 10 March 1989; accepted 22 May 1989)

Abstract

C}_{5} \mathrm{H}_{7} \mathrm{NO}, M_{r}=97 \cdot 1\), monoclinic, $P 2_{1} / c, a$ $=7 \cdot 181$ (3), $\quad b=15.495$ (5),$\quad c=8.995$ (2) $\AA, \quad \beta=$ $104.89(2)^{\circ}, \quad V=967 \cdot 2(5) \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.33 \mathrm{Mg} \mathrm{m}^{-3}$, time-of-flight neutron diffraction, $\lambda=$ 0.7 to $4.2 \AA, \mu=1.98$ to $5.90 \mathrm{~cm}^{-1}, T=20 \mathrm{~K}, R(F)$ $=0.064, w R\left(F^{2}\right)=0.119$ for 3150 reflections $\left(F_{o}{ }^{2}>\right.$ $3 \sigma)$. The asymmetric unit contains two independent, but nearly identical, neutral molecules. The orientation of the exocyclic methylene group with respect to the carboxamide group is consistent with stereochemical preferences shown by methylenecyclopropane rearrangements.

Introduction. The stereochemical preferences exhibited by the [1,3] sigmatropic carbon shift in the methylenecyclopropane rearrangement, (1) $\rightarrow(2)$, a reaction that continues to attract serious theoretical scrutiny (Skancke, Schaad \& Hess, 1988), are not entirely understood. A single-crystal X-ray structure determination of methylenecyclopropane-2-carboxamide revealed a displacement of the exocyclic methylene carbon $\mathrm{C}(4)$ toward the carboxamidesubstituted ring carbon $\mathrm{C}(2)$, which is the preferred pivot atom in the methylenecyclopropane rearrangement (Van Derveer, Baldwin \& Parker,

[^2]1987). We have undertaken a neutron diffraction investigation in order to locate precisely the hydrogen atoms and fully characterize the molecular geometry.

Experimental. Time-of-flight (TOF) neutron diffraction data were obtained at the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory using the single-crystal diffractometer equipped with an area position-sensitive ${ }^{6} \mathrm{Li}$-glass scintillation detector and an Air Products Displex closed-cycle helium refrigerator for cooling the sample (Schultz, 1987). A $0.6 \times 1.6 \times 2.2 \mathrm{~mm}$ crystal, obtained by very slow concentration through evaporation of a benzene solution of the amide, was maintained at a temperature of 20 K .24 crystal orientations were required to cover a unique quadrant of reciprocal space. For each crystal setting, data were stored in three-dimensional histogram form with coordinates x, y, t corresponding to horizontal and vertical detector positions and the TOF, respectively. The 120 TOF histogram channels were constructed with © 1990 International Union of Crystallography ${ }^{\text {© }}$

[^0]: * Authors to whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters and hydrogen positions have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52262 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * IUPAC name: 2-methylenecyclopropanecarboxamide.

